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REDUNDANCY OPTIMIZATION FOR SERIES K-OUT-OF-N SYSTEMS
by Darl D. Bien
Lewis Research Center
ABSTRACT

This analysis considers the optimum allocation of redundancy in a
system of serially-connected subsystems in which each subsystem is of
the k-out-of-n type. The two problems treated are (a) maximization of
system reliability subject to multiple cost constraints and (b) minimi-
zation of some function of multiple costs while maintaining at least a
minimum acceptable level of reliability.

Five techniques are presented for solving one or both of these
problems. Since the choice of solution technique is determined by such
things as computer program availability, degree of accuracy needed, and
extent of desired optimum surface mapping, the relative merits of these
techniques are discussed.

The series-parallel redundancy optimization problem is a special
case of the problem treated here. For this case, approximate solutions
in closed form are presented. These solutions are compared with solu~
tions produced by a method of exact optimization.

INTRODUCTION
There is a basic conflict in utilizing redundancy in a system.

The addition of redundant components increases the costs - measured in




weight, volume, money, etc. — at the same time that it increases reli-
ability. Redundancy optimization is an effort to minimize this conflict.

The simplest redundancy arrangement is one for which n components
are connected in parallel and for which the required function is per-
formed as long as at least one of the components functions properly. If
all components are identical and equally susceptible to failure, the
arrangement is called parallel redundancy. When several such parallel
subsystems are serially connected, the familiar series-parallel system
results as seen in figure 1. It is for this particular system that most
of the redundancy optimization procedures have been developed.

A more general redundancy arrangement is one which requires at
least k of n components to function properly for subsystem success.
The serial connection of several such subsystems results in the series
k-out~of-n sysfem as seen in figure 2.

The problem of optimally allocating redundancy in the series
k-out-of-n system is treated herein. Study of this problem was moti-
vated because (1) k-out-of-n subsystems are important by themselves and
(2) k-out-of-n subsystems include as special cases the parallel and series
subsystems.

Finally, closed-form approximate equations are given for optimum re-
dundancy allocation for the series-parallel system.

REDUNDANCY ALLOCATION PROBLEMS
Problem I: Maximizing reliability subject to multiple cost constraints

The function to be maximized is the system reliability R given by

m
R = ‘ ‘ ry (1)
i=1




where r, is the reliability of the ith subsystem and there are m
such subsystems connected in series. Associated with each component of
subsystem i there are s different cost factors, none of which can
exceed the allowable resource Coj max® Hence, the constraint function

is given by
m
zz; cijni S.Coj max (j=1,s; n, integer) (2)
i=1

. .th . . th
where Cij is the j type of cost of a single component of the 1
. . .th
subsystem, n, 1s the number of components in the i subsystem, and
where the * subscript denotes summation over i=1,m.
Problem II: Minimizing some function of multiple costs while main-
taining a minimum acceptable system reliability

The function to be minimized is some function of the s cost

factors
m
C»j = §£> Cijni (3=l,s;ni‘1nteger) (3)
i=1
subject to the constraint that
m
I I Ty 2'Rmin (4)
i=1
SUBSYSTEM RELTIABILITY EQUATIONS
For simple parallel subsystems the subsystem reliability is

n,
r,=1- q; 1 (5)

where 9 is the failure probability of the ith component.,




For k-out-of~n subsystems, the subsystem reliability is given by
the binomial summation

i (ni) n.-x
= X - .
T, < /1P5 (1 Pi) (ki’ n,; integer) (6)

=
where p; = 1~ 9y is the success probability of the ith component.

In principle, the optimum allocation of redundancy can be achieved
by examining all possible combinations of components and choosing the
ones which satisfy the requirements of reliability and/or costs. This,
however, involves an inordinate expenditure of effort. Several methods
have been used to obtain solutions for the series-parallel system with-
out searching all combinations. Five of these methods have been adapted
to the problem of series k-out-of-n systems and these methods are briefly
discussed. A more detailed account of these techniques is contained in
Bien (1970).

METHODS OF SOLUTION

The first method is due to Kettelle (1962) and was modified by
Proschan and Bray (1965) to include multiple cost factors. Their work,
of course, is for the series-parallel system model. Kettelle's modified
method is used to generate the complete family of solutions over a range
of reliability and costs but, since it is a dynamic programming technique,
it is plagued by the problem of dimensionality. The second method uses
Lagrange multipliers as applied to nondifferentiable functions (Everett,
1963) to generate the "best" solutions with much less effort than
Kettelle's method. The third method involves selecting consecutively

for redundancy the subsystem which contributes the greatest reliability




per unit of weighted costs (Barlow and Proschan, 1965). By generating
solutions for a grid of weighting factors, this method gives the same
solutions as the Lagrange multiplier method. These last two methods are
subject to some restrictions on the subsystem reliability equation.

Two other methods are available for treating Problem I, the maxi-
mization of reliability subject to several cost constraints. Ghare and
Taylor (1969) use a multi~dimensional knapsack formulation of the series~
parallel system optimization problem. Using a branch-and-bound procedure,
they obtain the exact solution to Problem I. It is shown in Bien (1970)
that their procedure is also valid for the series k-out~of-n system.

The final method of solving this problem is due to Mizukami (1968). For
maximizing concave functions, his method is referred to as the method of
concave and integer programming. . The reliability function which is to
be maximized is made approximately piecewise linear in his paper. Methods
of linear programming can thus be used to obtain approximate solutions to
this problem.

EXAMPLE PROBLEM

Shown in figure 3 is an example of a series k-out—of-n system con-
sisting of four subsystems. The component success probability, monetary
cost, and weight are shown in the figure. The values of ki are 3,2,1,
and 4 as denoted by the lack of shading. This example problem was soclved
by the first three methods and the results are shown in figure 4.

The complete set of configurations having system cost between 115
and 130 while system reliability is between 0.90 and 0.95 literally fills

the triangular area below and to the right of the solid line in figure 4.




Only the optimum or undominated solutions are noted in the figure. That
is, any other configuration is either more costly for the same reliability
or less reliable for the same costs.

COMPARISON OF METHODS

The method of Kettelle (1962) provides the complete family of undom-
inated allocations to be redundancy optimization problems. It is a dy~-
namic programming procedure and, hence, becomes quite unwieldy for large
systems subject to many constraints. It is readily adapted to computer
analysis, however, and Proschan and Bray (1965) discuss a computer pro-
gram caﬁable of handling a maximum of three constraints, a maximum of
sixty-four subsystems, a maximum of ten components in each subsystem, and
a maximum of 1024 entries in the dominating set at any combination of sub-
systems. According to them, the only method for determining whether it
is practical to solve a given problem is to attempt to find the solution.
Kettelle (1962) and Proschan and Bray (1965) both introduced an assump-
tion in producing their dominating sets, resulting in an error in reli-
ability no more than (1 - R)Z. That unnecessary assumption was elimin-—
ated from the development presented in Bien (1970), the procedure pro-
ducing exact solutions.

A partial list of undominated solutions comprising the convex-hull,
or "best", optimum allocations is determined by the method of Lagrange
multipliers due to Everett (1963). A trial-and-error procedure is re-
quired in the selection of the Lagraﬁge multipliers; the multipliers
yielding the optimal solutions are not known beforehand but are pro-
duced in the course of the solution. This technique is most useful in

determining the single best allocation satisfying the constraints rather




than in generating the optimum solutions over a range of the constraints.
The complexity increases substantially with the number of constraints, an
obvious disadvantage for the many-constraint problem.

The same convex-hull points are produced more readily by the method
of balancing sensitivities. Because the procedure begins with subsystems
whose reliability is at the lower end of a range of interest, the pro-
cedure is particularly suited to the case for which a set of solutions is
desired satisfying a range of constraints. The convex hull solutions are
produced with much less effort than by the method of Kettelle (1962).

The trial and error involved in selecting the appropriate weighting fac-
tors is minimal compared to the trial and error involved in the method
of Lagrange multipliers. Since all combinations of weighting factors
must be investigated in order to assure that none of the possible solu-
tions is missed, there is an obvious problem of dimensionality for prob~
lems involving many constraints.

The last two procedures produce only the convex hull peints and,
as such, they may miss the optimal allocations of interest. It is sug-
gested that one of these last two methods be used to produce an optimal
allocation whose reliability or cost vector is at the lower end of the
range of interest. This allocation could then be used as a starting
point for the dynamic programming procedure and the successively larger
redundancy allocations could be produced with much less effort than if
just the dynamic programming procedure alone were used.

The method of Ghare and Taylor (1969) produces exact solutions to
Problem I, the problem of maximizing reliability subject to seversal

cost constraints. They have written a computer program solving problems




of up to 100 subsystems, up to 15 constraints, and up to 500 redundant
components for the series parallel system. Their program requires only
5500 words of memory space on the IBM 360/50 system.

The method of integer concave programming (Mizukami, 1968) produces
approximate solutions to Problem I. The advantage of this technique is
that standard linear programming methods can be used. For integer solu-
tions, he suggests Gomory's (1958) integer linear programming technique.
The approximations introduced by this method can be made arbitrarily
good but at a cost in complexity.

THE SERIES-PARALLEL SYSTEM

The method of Lagrange multipliers was used to obtain closed-form
solutions for series-parallel redundancy optimization when only a single
type of cost is of interest. Solutions thus obtained are approximate in
that the resultant numbers of components are not necessarily integral.
However, such non-integer solutions may be good enough for most purposes;
if not, they form a convenient basis for an integer programming
formulation.

Maximizing Reliability for Fixed Cost

For the series-parallel system, the function to be maximized is

R=TT]@-9q; 7 (7
i=1

subject to

m

. o
}:) S < C (8)
i=1

where X, is the continuous variable for number of components in




subsystem 1. The resultant solution by Lagrange multipliers, which is

good for reasonably reliable systems, is

- It

L . Ci Ci
C+§ :-dnq. In -1ln q,
1 ©4 i=1 * * .
%% = {a ; ~ )
i -1n q, -ln q. m
i 1 EE:> c; )
= <"ln S
\ i= J

Minimizing Cost for Fixed Reliability

The function to be minimized is

m
C = EZ) C X, (103

i=1

subject to

m X,
TTa-q¢H2r (1)
i=1 |

The resultant equation for X, in terms of R 1is

an___l__ -=In (L - R) - 1In
i -1n 95 :

(12)

Equations (9) and (12) allow ready determination of X in terms
of all known quantities. An example problem was solved to check the use-
bfulness of these equations. The systemis shown in figure 5. In figure 6
the optimum solutions produced by the methods of Kettelle (1962) and
Everett (1963) are shown along with the curve of system reliability ob-

tained using X, as a function of C from equation (9).
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In the search for optimal sclutions, a reasonable question concerns
the maximum reliability achievable for a fixed cost or the minimum cost
achievable for a fixed reliability. These equations agllow rapid deter-
mination of those optimum conditions theoretically achievable with non-
integer numbers of components. In this way a systems designer can de-
termine whether a given design (arrangement of components) is near op-
timum and hence whether much could be gained by searching for the unigue
optimum design.

SUMMARY AND DISCUSSION

The optimization of redundancy in the series k-out-of-n system can
be accomplished by appropriate use of some of the techniques used to
solve similar problems for series-parallel systems. The two types of
optimization problems considered herein are:

(1) Maximizing system reliability subject to multiple cost con-
straints, and

(2) Minimizing some function of the multiple cost factors subject
to maintaining at least a minimum acceptable level of system reliability

Five techniques are discussed for solving one or both of the above
problems without resorting to the inordinate expenditure of effort re-
quired in examining all possible combinations of components. These five
methods are:

(1) Kettelle's (1962) dynamic programming procedure as modified by Proschan
and Bray (1965) to include multiple comstraints,

(2) Everett's (1963) generalized Lagrange multiplier technique,
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(3) The method of selecting consecutively for redundancy those
subsystems which increase the reliability per unit of weighted costs
by the greatest amount; e.g., Barlow and Proschan (1965).

(4) Ghare and Taylor's (1969) formulation of the problem as a
multi-dimensional knapsack problem using a branch-and-bound procedure, and

(5) Mizukami's (1968) combined concave and. integer programming
procedure.

These five methods are compared and an example problem is solved by
the first three methods.

Closed-form equations, derived by the use of Lagrange multipliers,
are presented for the series-parallel system optimization problems of

(1) Maximizing system reliability while maintaining a fixed single
cost constraint, and

(2) Minimizing a single cost while maintaining a fixed system
reliability.

The usefulness of the equations is shown by means of an example problem.
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Figure 1. - Typical series parallel system.
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Figure 2 - Typical series k-out-of-n system.
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Figure 3. - System of 4 k-out-of-n subsystems connected in series; example problem.
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Figure 5. - System of 4 parallel subsystems connected in series, example problem.
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Figure 6. - Comparison of exact and approximate solutions, example problem.

NASA-Lewis




